If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+10-120=0
We add all the numbers together, and all the variables
q^2-110=0
a = 1; b = 0; c = -110;
Δ = b2-4ac
Δ = 02-4·1·(-110)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{110}}{2*1}=\frac{0-2\sqrt{110}}{2} =-\frac{2\sqrt{110}}{2} =-\sqrt{110} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{110}}{2*1}=\frac{0+2\sqrt{110}}{2} =\frac{2\sqrt{110}}{2} =\sqrt{110} $
| -v/9=-40 | | 4x-3x=3x-2 | | 59=-v/4 | | 2u2+3u-5=0 | | 5b+7=3b-17 | | 5(x-7)=2x+2 | | 7x-0.5=20.5 | | w-10=32 | | 43=x/2+13 | | Y=0.25x-11 | | (21)(w)-9=35 | | (21(w)-9=107 | | 12-(11)(a)=32 | | 12-(4)(a)=44 | | (5)(x)+14=29 | | 10^x=2.9 | | 5y+12=6y | | 3r-7=29 | | 3(2x+5)=4-(3+x)¨ | | 19+(16)(v)=51 | | (25)(x)+1=118 | | (g-4)(g+4)=g2-16 | | 8-(5)(x)=7 | | x+0.01x=200 | | (12)(y)+6=42 | | 9+6x=7x+10 | | 3x+1=2(1+3x)+19 | | x3+12x2+36x+64=0 | | 3^x-2-16=65 | | x+x+x-30=180 | | 17v+8v=60+15 | | 3x+9/7x=0 |